
Page 1 of 17

Getting Started with Ethernet on the STM32 Nucleo
Using STM32CubeMX with Light-Weight IP (LwIP) and System Workbench for STM32 (Eclipse)

Daniel W Rickey
CancerCare Manitoba
drickey@cancercare.mb.ca
2018-03-07

Introduction
The Nucleo boards produced by ST Microelectronics are wonderfully powerful and cheap. It is fantastic
that ST doesn’t treat developers as just another revenue stream. On a whim I bought a Nucleo-F767ZI,
which has a built-in ethernet connector (not Wifi). I found that setting up LwIP was a fairly involved
process, thus I made these notes. I am assuming the reader, like myself, is new to these environments
and will find these useful. To avoid complexities, I have not made use of RTOS.

CubeMX
Fortunately CubeMX has improved a great deal since it was first introduced. It is used here to configure
the peripherals and LwIP. The first step is to select the board from the list.

CubeMX will ask if all peripherals should be initialised to their default mode. For the Nucleo boards,
I’m not sure this makes much difference as there are not very many peripherals. I selected “yes”.

Page 2 of 17

As shown below, enable LWIP, which is listed under “MiddleWares”. Check that the ethernet “Eth” is
enabled.

The Nucleo boards contains LEDs that the user can turn on and off. These are used in this example.
Note that ST failed here because different Nucleo boards use different names for the same LEDs. So
much for code portability. This is a good time to note the names used by your board: here they are
“LD2” and “LD3”.

Page 3 of 17

The next step is to configure the various options for LwIP. These are accessed through the “LWIP”
button on the “Configuration” tab.

Page 4 of 17

At this point development is a whole lot easier if you hardwire the IP address of the board. That is,
disable DHCP (LWIP_DHCP). I plugged my board into the same switch as my development computer so
it was easy to reach. Pick an address that’s reachable but not already used by another device on your
network: you could ping the proposed address to make sure it’s free.

Also note that RTOS is disabled. A simple poling loop will be used instead.

Most of the settings were left at their defaults. However, to enable the webserver, the following
options were enabled: LWIP_HTTPD, LWIP_HTTPD_CGI and LWIP_HTTPD_SSI. Because the Nucleo
board has bucket loads of memory, the maximum tag length (LWIP_HTTPD_MAX_TAG_NAME_LEN)
was increased from 8 to 16 characters.

I found out that it is important to set these options before importing the project into Eclipse. I
encountered bizarre behaviour when I used CubeMX to enable an option after the project had been
imported.

Page 5 of 17

Note that I didn’t bother with “HTTP CGI NEW STYLE” as I could not find much in the way of
documentation or examples.

Under “Advanced Settings”, it is possible to disable initialisation of the peripherals. Here, I disabled
the UART and USB initialisation as they are not needed for this example.

Page 6 of 17

Export the project using the toolchain “SW4STM32” (System Workbench for STM32). I think you want
“Generate Under Root” enabled.

The following dialogue box is presented. I just selected “Close”.

Page 7 of 17

ST-Link
It is a good idea to confirm that the ST-Link debugger has the latest firmware on it. Use the ST-Link
utility to do this. This also ensures that the required device drivers have been installed.

Importing into Eclipse
Importing into Eclipse requires a couple of steps but works well. Import through the dropdown menu
file:import as “Existing Projects into Workspace”.

Browse to the folder holding the project. There should only be one project visible, and tell it to finish.
If the project imports properly, you should be able to few the various files.

Page 8 of 17

Missing bits
If you try to build the project it will fail miserably as shown in the following figure. The problem is that
there is a very important file missing: fsdata.c. This is the file that holds the content of your website
and is needed by HTTPD.

To quickly try out the HTTP server, you can make use of an existing fsdata.c that is included as an
example with CubeMX. You may need to search your drive for it although one is located at:

...\STM32Cube\Repository\STM32Cube_FW_F7_V1.9.0\Middlewares\Third_Party\LwIP\src\apps\htt
pd

Annoyingly LwIP has hard coded the path so you will need to copy fsdata.c to the following folder:

...\myServer1\Middlewares\Third_Party\LwIP\src\apps\httpd

Page 9 of 17

Note that although fsdata.c appears to be a C source file, it must not be compiled because truly bizarre
error messages will result. Select fsdata.c in the project explorer and exclude it from the build as shown
in the following two figures.

Page 10 of 17

Ping
At this point the code should build but it won’t work properly. The function call MX_LWIP_Process()
needs to be added to the while loop in main.

 /* Infinite loop */

/* USER CODE BEGIN WHILE */
while (1)
 {
 //Read a received packet from the Ethernet buffers and Send it to the lwIP stack for
handling
 MX_LWIP_Process();
 /* USER CODE END WHILE */
 /* USER CODE BEGIN 3 */
 }
 /* USER CODE END 3 */

The code should be able to build. Then you should be able to ping your board as shown in the following
figure.

Viewing a webpage
The next step is to start the webserver by adding httpd_init() to main. Be sure to add the corresponding
include statement for httpd.h.

/* USER CODE BEGIN Includes */
#include "lwip/apps/httpd.h"

/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_LWIP_Init();

/* USER CODE BEGIN 2 */
//start the web server
httpd_init();

Page 11 of 17

/* USER CODE END 2 */

When the code is running on the Nucleo board, you should be able to access a webpage by typing
http://192.168.0.55 into a web browser. At this point you should be able to view the webpage in a
browser.

Making a Webpage
You will need to make your own webpage. Because the microcontroller doesn’t (usually) have a file
system, the webpages are converted to a single file fsdata.c that is included at compile time. To do this
use the command line utility htmlgen.exe in the DOS command line or makefsdata in unix. Rather
annoyingly a binary for DOS of this utility is not included with LWIP but there is one on the web
...somewhere.

For example, if the html files are contained in the folder "leds", the command is htmlgen leds -
f:fsdata.c. The folder should contain an index.html file and a 404.html file at a minimum. The 404.html
file is helpful if you make a mistake and tell the server to load a non-existent webpage. Otherwise, it
would just sit there like a bump and you won’t know what is wrong.

Note that you should do a clean rebuild after changing fsdata.c.

Simple CGI handler
Implementing a CGI handler isn’t too difficult. Start with a simple web page that has two checkboxes
on it. The web page used here is really short.

<!DOCTYPE html>
<html><head><title>LED Test</title>

<p>This allows you to control the LEDs: LED1 and LED2. You have to click on "Send" button
to change the LEDs</p>

Page 12 of 17

<form method="get" action="/leds.cgi">
<input value="1" name="led" type="checkbox">LED1

<input value="2" name="led" type="checkbox">LED2

<input value="Send" type="submit"> </form>
</html>

The idea behind this webpage is it allows the user to turn on the LEDs on the Nucleo board. So you will
need to enable these LEDs with code similar to the following

/* USER CODE BEGIN PV */
/* Private variables ---*/
static GPIO_InitTypeDef GPIO_InitStruct;

/* USER CODE BEGIN 2 */
//setup the blue LED
//note that different Nucleo boards use different names for the same LEDs
GPIO_InitStruct.Pin = LD2_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_PULLUP;
GPIO_InitStruct.Speed = GPIO_SPEED_FAST;
HAL_GPIO_Init(LD2_GPIO_Port, &GPIO_InitStruct);

//setup the red LED
GPIO_InitStruct.Pin = LD3_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_PULLUP;
GPIO_InitStruct.Speed = GPIO_SPEED_FAST;
HAL_GPIO_Init(LD3_GPIO_Port, &GPIO_InitStruct);

The CGI handler for turning on the LEDs is the following. The function header is defined in httpd.h as
type tCGIHandler.

/* USER CODE BEGIN 0 */

/**** CGI handler for controlling the LEDs ****/
// the function pointer for a CGI script handler is defined in httpd.h as tCGIHandler
const char * LedCGIhandler(int iIndex, int iNumParams, char *pcParam[], char *pcValue[])
{
 uint32_t i=0;

 // index of the CGI within the theCGItable array passed to http_set_cgi_handlers
 // Given how this example is structured, this may be a redundant check.
// Here there is only one handler iIndex == 0
 if (iIndex == 0)
 {
 // turn off the LEDs

Page 13 of 17

 HAL_GPIO_WritePin(LD3_GPIO_Port, LD2_Pin, GPIO_PIN_RESET);
 HAL_GPIO_WritePin(LD3_GPIO_Port, LD3_Pin, GPIO_PIN_RESET);

 // Check the cgi parameters, e.g., GET /leds.cgi?led=1&led=2
 for (i=0; i<iNumParams; i++)
 {
 //if pcParmeter contains "led", then one of the LED check boxes has been set on
 if (strcmp(pcParam[i], "led") == 0)
 {
 //see if checkbox for LED 1 has been set
 if(strcmp(pcValue[i], "1") == 0)
 {
 // switch led 1 ON if 1
 HAL_GPIO_WritePin(LD3_GPIO_Port, LD2_Pin, GPIO_PIN_SET);
 }

 //see if checkbox for LED 2 has been set
 else if(strcmp(pcValue[i], "2") == 0)
 {
 // switch led 2 ON if 2
 HAL_GPIO_WritePin(LD3_GPIO_Port, LD3_Pin, GPIO_PIN_SET);
 }
 } //if
 } //for
 } //if

 //uniform resource identifier to send after CGI call, i.e., path and filename of the
response
 return "/index.html";
} //LedCGIhandler

We need to tell the HTTPD code to use this handler. To do this, the LedCGIhandler is added to a list.
First a structure is created that shows that leds.cgi corresponds to the LedCGIhandler.

/* USER CODE BEGIN PV */
/* Private variables ---*/
// prototype CGI handler for the LED control
const char * LedCGIhandler(int iIndex, int iNumParams, char *pcParam[], char *pcValue[]);

// this structure contains the name of the LED CGI and corresponding handler for the LEDs
const tCGI LedCGI={"/leds.cgi", LedCGIhandler};

//table of the CGI names and handlers
tCGI theCGItable[1];

Also add the following function to /* USER CODE BEGIN 0 */

Page 14 of 17

// Initialize the CGI handlers
void myCGIinit(void)
{
//add LED control CGI to the table
theCGItable[0] = LedCGI;

//give the table to the HTTP server
http_set_cgi_handlers(theCGItable, 1);
} //myCGIinit

Then in the main code, call myCGIinit.
//start the web server
httpd_init();
//initialise the CGI handlers
myCGIinit();

The code should compile and run. With some luck the you will be able to set the LEDs from the
webpage.

Server side includes (SSI)
Server side includes let the microcontroller generate text that is displayed on the webpage. For
example, this could be used to display the output of an analogue-to-digital converter . To do this, tags
located in the HTML code are replaced by text when the webpage is served to the client. Note that the
SSI function is called each time the HTTPD server detects a tag of the form <!--#name--> in a .shtml, .ssi
or .shtm file. It won't work if the file has a .html extension. Start by adding a couple of lines to the
previous webpage as shown below. Note that the filename must be index.shtml, and you will need to
adjust this file name in the LedCGIhandler function. Use the command line utility to convert this to
fsdata.c

<!DOCTYPE html>
<html><head><title>LED Test</title>

<body>
<p>This allows you to control the LEDs: LED1 and LED2. You have to click on "Send" button
to change the LEDs</p>

<form method="get" action="/leds.cgi">
<input value="1" name="led" type="checkbox">LED1

<input value="2" name="led" type="checkbox">LED2

Page 15 of 17

<p>text for tag1: <!--#tag1--></p>
<p>text for tag2: <!--#tag2--></p>

<input value="Send" type="submit"> </form>
</body></html>

The HTTPD functions need a list of the tags contained in the HTML code.
//array of tags for the SSI handler
//these are the tags <!--#tag1--> contained in the shtml file
#define numSSItags 2
char const *theSSItags[numSSItags] = {"tag1","tag2"};

The handler function is relatively easy to write. The iIndex tells you which tag in the array to take care
of. Place the text to be displayed into pcInsert and return the number of characters inserted.

/**** SSI handler ****/
// This function is called each time the HTTPD server detects a tag of the form
// <!--#name--> in a .shtml, .ssi or .shtm file
// It won't work if the file has a .html extension.
u16_t mySSIHandler(int iIndex, char *pcInsert, int iInsertLen)
{
 // see which tag in the array theSSItags to handle
 if (iIndex == 0) //is “tag1”
 {
 char myStr1[] = "Hello from Tag #1!"; //string to be displayed on web page

 //copy the string to be displayed to pcInsert
 strcpy(pcInsert, myStr1);

 //return number of characters that need to be inserted in html
 return strlen(myStr1);
 }
 else if (iIndex == 1) //is “tag2”
 {
 char myStr2[] = "Hello from Tag #2!"; //string to be displayed on web page

 //copy string to be displayed
 strcpy(pcInsert, myStr2);

 //return number of characters that need to be inserted in html
 return strlen(myStr2);
 }
 return 0;
} //mySSIHandler

Page 16 of 17

Call the following function from main to initialise the SSI handler.

/**** Initialize SSI handlers ****/
void mySSIinit(void)
{
 //configure SSI handler function
 //theSSItags is an array of SSI tag strings to search for in SSI-enabled files
 http_set_ssi_handler(mySSIHandler, (char const **)theSSItags, numSSItags);
} //mySSIinit

/* USER CODE END 0 */

Then you should be able to compile and run the code. With some luck the text will be displayed on the
webpage as shown below.

Sending email
The LWIP code does not include an email client. However, there is an SMTP client available as a
separate download. See contrib at download.savannah.nongnu.org/releases/lwip/. There are two files
smtp.c and smtp.h. Place these in the Src and Inc folders in your project, respectively.

Using the email routines is really easy. Simply set up the server address and authentication. Then
sending an email is a single function call.

//this function is called when SMTP wants to tell us something
void mySMTPresult(void *arg, u8_t smtp_result, u16_t srv_err, err_t err)
{
printf("mail (%p) sent with results: 0x%02x, 0x%04x, 0x%08x\n", arg, smtp_result, srv_err,
err);
} //mySMTPresult

/**** send an email using SMTP ****/
static void sendAnEmail(void)

Page 17 of 17

{
#define emailFrom "yourEmail@yourISP.ca"
#define emailTo "drickey@cancercare.mb.ca"

#define emailSubject "annoying"
#define emailMessage "this is an annoying message"

int * some_argument = 0;
//IP address or DNS name for your SMTP connection
//smtp_set_server_addr("mail.yourISP.ca"); //if using DNS
smtp_set_server_addr("xxx.xxx.128.128"); //if using IP address

// set both username and password as NULL if no authentication needed
smtp_set_auth("yourUserID", "yourPassowrd");
smtp_send_mail(emailFrom, textTo, emailSubject, emailMessage, mySMTPresult,
some_argument);
} //sendAnEmail

I believe the password is sent unencrypted, so be careful with your selection of email host. You can
use this to send a text message to a cell phone via email. This could be used to let you know that your
garage door is open or for annoying your friends.

Problems
1) If you encounter bizarre behaviour where a #define seems to change values, i.e., is “1” in one
location and “0” in another, then try exporting the project from CubeMX under a new name. This will
require you to reimport it into Eclipse and add the example code to main.c.

2) When using server side includes, the file must have a .shtml extension otherwise the tags won’t
work.

3) Be sure to include a 404.html file in case you screw up and ask the server to show a non-existent
webpage.

4) If the webpage displays but is really slow, try rebooting the whole works (computer and
microcontroller).

5) Make sure fsdata.c is in the correct folder but is excluded from the build. Trying to compile fsdata.c
will generate very odd errors.

6) Always do a clean rebuild after changing fsdata.c.

-- end --

